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The Hirshfeld stockholder partitioning of a molecular density into subsystem densities, e.g., of atoms-in-
molecules, is derived from the Fisher entropy for locality (intrinsic accuracy) referenced to the isolated atom
densities. This complements the previous derivation using the entropy deficiency of Kullback and Leibler,
thereby strongly suggesting that the Hirshfeld result is independent of the information measure applied to
assimilate the reference atomic information. Several properties of such subsystems are examined. It is shown
that they represent equilibrium, stable pieces of the molecular density, which minimize and reduce to zero
the nonadditivity of the missing information relative to the isolated atom reference. The equilibrium criteria
for the optimum partitioning in both the entropy and energy representations are derived and interpreted in
terms of local entropies of subsystems and their related “temperatures” of information. Generalized variational
principles in the entropy and energy representations are proposed, which link the entropy of the information
theory with energetical parameters of molecular systems. The associated information temperature becomes
infinite, when a single ground-state density is the density of interest.

1. Introduction

The dominant perspective in chemical thought is that of
molecules as combinations of atoms and functional groups
connected by chemical bonds. All such chemical (bonded)
subsystems may be considered to be only slightly perturbed in
comparison to the corresponding separated subsystems, i.e.,
when the complementary molecular environments are missing.
Chemical atoms are usually only weakly deformed by the
polarization and charge transfer associated with the formation
of chemical bonds, with a change in the bonding pattern
affecting mainly the valence shell of atoms comprising a
molecule. It is therefore appealing for interpretative purposes
to invoke the criterion of the maximum similarity between the
bondedatoms-in-molecules(AIM; open subsystems) and the
corresponding isolated atoms (or ions) of the periodic table of
elements.

As we have recently demonstrated,1 the information theory2-9

can be used to assimilate in the most unbiased manner the
information content of the appropriate free atom densities, in
the partitioning of a molecular density into atomic densities.
Using the Kullback-Leibler (KL)7 minimum missing informa-
tion (entropy deficiency) principle produces the Hirshfeld10

(“stockholder”) AIM densities as the pieces of the molecular
density optimally most resembling the densities of the corre-
sponding isolated atoms. A similar information-theoretic ap-
proach gives solutions to the problem of assessing similarity
between molecules and their fragments and to the problem of
determining the bond multiplicities in a molecule.11

The Hirshfeld atom, which exhibits the minimum information
distance to its free atom reference, possesses, like its free
analogue, a single cusp in its electron density, linked to the
effective atomic number of the nucleus.12 Hirshfeld atoms
overlap, and each of them extends over the whole space. One

would hope to find that the Hirshfeld partitioning is unique,
when theseparated atom limitis adopted as a reference, being
independent of the specific information measure adopted in the
entropy extremum principle. In the present paper, we shall
examine this question by using the Fisher information for
locality called intrinsic accuracy.8 We demonstrate that it also
leads to the Hirshfeld subsystem densities. Moreover, it is shown
that it gives rise to additivity of the missing information
functional.

The unique character of the stockholder partitioning prompts
us here to further examine some of the “thermodynamical”
properties of the Hirshfeld subsystems. In particular, we shall
elucidate the equilibrium and stable character of such open AIM.

It is essential to note that all divisions of the fixed, ground-
state molecular density, say of AB,F ) FA + FB, must be carried
out for constant energy of the molecule as a whole, because by
the Hohenberg-Kohn theorem of thedensity functional theory
(DFT)13,14 the density fixes the system energyE ) EV[F].
Therefore, determining the optimum partitioning ofF by the
information-entropy extremum principle calls to mind the
familiar maximum entropy principle of classical thermodynam-
ics.15 We further explore these thermodynamical analogies in
the present work, by interpreting the equilibrium principles in
both the entropy and energy representations in terms of the
information-theoretic entropy densities and the associated local
information “temperatures” of subsystems, much in the spirit
of earlier thermodynamical transcriptions of DFT.16

2. Hirshfeld Partitioning of Molecular Density and the
Minimum Entropy Deficiency Principle

The KL7 referenced information entropy functional of the
(normalized) trial probability distributionp(rb) relative to the
reference distributionpo(rb)
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∆SKL[p|po] ) ∫p( rb) ln[ p( rb)

po( rb)] drb ≡ SKL[p] g 0 (1)
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called the missing information or entropy deficiency, measures
the information “distance” betweenp andpo. The corresponding
principle of the minimum entropy deficiency3,7 represents a
systematic procedure for assimilating in the most unbiased
manner the information contained in the relevant constraints
imposed on the trial distributionp(rb), when searching for thep
most resembling the reference distributionpo.1,5,6

The logarithmic part of the integrand in eq 1

called surprisal, provides a local measure of the information
contained inp with reference topo. The information entropy
defined without a reference

is called the Shannon2 entropy of the distributionp(rb).
In what follows, we explicitly consider a molecule AB,

consisting of two complementary subsystems A and B, e.g.,
AIM. Generalization to an arbitrary number of subsystems is
trivial. To treat the classical problem of partitioning the
molecular densityF ) FA + FB into subsystem densities, one
defines the entropy deficiency functional1

where {FR
o} are the separated fragment or other reference

densities, and imposes the local constraint of the exhaustive
allocation ofF to FA andFB:

Then, the principle of minimum entropy deficiency

whereλ(rb) is the associated Lagrange multiplier function to be
determined from the constraint of eq 5, gives1 the Hirshfeld
subsystems:10

Here Fo ) ΣR)A,B FR
o stands for the “promolecule” density

consisting of the isolated fragment densities shifted to their
actual positions in the molecule. The universal factorD(rb)
determines the local proportionality of the subsystem density
to the reference density, whereas the local fragment share
wR

H(rb) is the fraction ofFR
o in Fo.

Now consider themixing missing information functional

where the last term is the information distance between the
molecular and promolecule densities. This functional provides
a measure of the nonadditive part of the missing information,
-∆SM

KL ) SKL[F] - SA
KL[FA] - SB

KL[FB], thus indeed reflecting

the net effect of mixing the atomic densities in a molecule.
Transforming the functional of eq 8 gives (see eq 7)

i.e., the entropy deficiency of arbitrary subsystem densities{FR}
relative to the corresponding Hirshfeld densities. The equality
sign in eq 9 holds only forFR ) FR

H, R ) A,B.
The strong conclusion is that the stockholder partitioning goes

uniquely with vanishing nonadditivity of the entropy deficiency,
when isolated fragment densities are used as reference. It also
follows from eq 9 that any deviation of the subsystem densities
from the equilibrium Hirshfeld ones must result in an increase
of the entropy deficiency, thus proving the information theoretic
stability of the optimum subsystem pieces of the molecular
density, with respect to all virtual displacements of the molecular
fragment densities preservingF.

To be more explicit, consider displacements{[dFR]F} which
represent changes in the amount of charge transfer between
subsystems and their internal polarization. Then, for the
Hirshfeld division ofF, the missing information is stable relative
to all such hypothetical displacements

where the equality sign implies{dFR ) 0}.
The KL functional of eq 4 consists of two terms:

The first, unreferenced term,Sdeloc
KL , yielding the total Shannon

information of the subsystem densities, by itself would make
the optimum densities of subsystems perfectly delocalized; we
therefore call it thedelocalization componentof the missing
information functional. The delocalization effect of theSdeloc

KL

functional is manifest in the entropy extremum principle:

having the perfectly delocalized, equidensity solutions, given
by the locally unbiased fractions ofF:

It is only owing to the second, reference-dependent,localization
component, Sloc

KL, that the Hirshfeld atoms become very much
like their free analogues.

3. Optimum Subsystem Densities from the Referenced
Intrinsic Accuracy Principle

The question naturally arises: Is the optimum partitioning
dependent on the specific information measure used, or will

I[p|po] ) ln[ p( rb)

po( rb)] (2)

S[p] ) ∫p( rb) ln[p( rb)] d rb (3)

∆SKL[FAFB|FA
o FB

o] ) ∑
R)A,B

∆SKL[FR|FR
o] ≡

∑
R)A,B

SR
KL[FR] ≡ SKL[FA,FB] (4)

F( rb) ) FA( rb) + FB( rb) (5)

δ{SKL[FA,FB] - ∫λ( rb)[FA( rb) + FB( rb)] d rb} ) 0 (6)

FR
H( rb) ) FR

o( rb)[ F( rb)

Fo( rb)] ≡ FR
o( rb) D( rb) ≡ wR

H( rb) F( rb) (7)

∆SM
KL[FAFB|FA

o FB
o] ) ∆SKL[FAFB|FA

o FB
o] - ∆SKL[F|Fo] (8)

∆SM
KL ) ∑

R)A,B
∫FR ln[ FR

FR
o( F

Fo)] drb ) ∑
R)A,B

∆SKL[FR|FR
H]

≡ ∆SKL[FAFB|FA
HFB

H] g 0 (9)

∑
R)A,B

∫ δ∆SKL

δFR( rb)
|

{FR
H}

[dFR( rb)]F drb ) 0,

global equilibrium; (10)

∑
R)A,B

∫ δ2∆SKL

δFR( rb)δFR( rb)
|

{FR
H}

[dFR( rb)]F
2 g 0,

global stability, (11)

∆SKL ) ∑
R)A,B

∫FR ln FR drb - ∑
R)A,B

∫FR ln FR
o drb

) Sdeloc
KL [FA,FB] - Sloc

KL[FAFB|FA
o FB

o] (12)

δ{Sdeloc
KL [FA,FB] - ∫φ( rb)[FA( rb) + FB( rb)] d rb} ) 0 (13)

FR
del( rb) ) F( rb)/2 R ) A,B (14)
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other measures produce different optimum solutions to the
partitioning problem? We examine this question by turning to
another information functional of the parametric probability
densityp(rb|θ) depending upon the parameterθ

introduced by Fisher.8 For the special case whenθ is a parameter
of locality

the Fisher information becomes (∂/∂rb ) ∇)

This functional defines the so-calledintrinsic accuracy17 of
p(rb), providing a measure of the “narrowness” of the probability
distribution. Because the Shannon (KL) information represents
the “spread” ofp(rb), the simple Shannon and simple Fisher
measures provide complementary characteristics of the prob-
ability distribution. Intrinsic accuracy itself, just as the Shannon
information Sdeloc

KL , on minimization produces the perfectly
delocalized pieces of the molecular density of eq 14. This can
be verified using the variational principle (compare eq 13):

whereæ(rb) is the Lagrange multiplier function for the constraint
of eq 5 and

To generate localized subsystem densities, one has to include
the separated subsystem reference in the Fisher entropy, which
then introduces the necessary “penalty” entropy when the AIM
densities deviate from the reference. Following the KL gener-
alization7 of Shannon’s entropy, we propose the referenced
generalization of the Fisher function of eq 15

or in the locality form (eq 17)

To test the localization performance of eq 20, we may
consider the simplest variational principle

where the Lagrange multiplierê is associated with the constraint
of p normalization: ∫p drb ) 1. The corresponding Euler
equation

whereR(rb) ≡ p(rb)/po(rb), gives

Thus, a finite value ofR(rb) can only be obtained whenê ) 0,
ln R(rb) ) 0, or p(rb) ) po(rb). The same solution follows when
one substitutes∆SKL[p|po] for ∆IF[p|po] in eq 22.1 This verifies
the localization effect of the functional of eq 20, required to
produce localized subsystem densities in the molecular density
partitioning problem. We call the referenced Fisher’s functional
of eq 20 theFisher missing information(entropy deficiency)
or theFisher information distancebetweenp andpo.

Following the analysis of the preceding section, one again
identifies the properlocalization partof the ∆IF functional as
the difference

where Ideloc
F [p] ≡ IF[p] stands for the reference-independent

intrinsic accuracy of eq 17.
Let us now go back to the partitioning of the AB densityF

into FA and FB (eq 5), which can be rewritten in terms of
functions{RR ) FR/FR

o} of the relative subsystem densities:

Implementing the principle of the minimum of Fisher’s entropy
deficiency for locality

where ∆IF[FA FB|FA
o FB

o] ) ∆IF[FA|FA
o ] + ∆IF[FB|FB

o] ≡
SF[FA,FB] ≡ IA

F[FA] + IB
F[FB] and h(rb) is the local Lagrange

multiplier associated with the exhaustive partitioning constraint
of eq 26, gives the following equation for the optimum
subsystem densities:

Hence

Now, the functionR(rb) automatically follows from eq 26 (see
also eq 7)

and

IF(θ) ) ∫p( rb|θ) [∂ ln p( rb|θ)
∂θ ]2

drb ) ∫[∂p( rb|θ)
∂θ ]2

p( rb|θ)
drb (15)

p( rb|θB) ) p( rb + θB) ≡ p( rb′) (16)

IF(θB ) 0B) ) ∫p( rb) [∂ ln p( rb)
drb ]2

drb ) ∫(∂p( rb)
∂ rb )2

p( rb)
drb ≡

IF[p] (17)

δ{Ideloc
F [FA,FB] - ∫æ( rb)[FA( rb) + FB( rb)] d rb} ) 0 (18)

Ideloc
F [FA,FB] ) IF[FA] + IF[FB] (19)

∆IF[p( rb|θ)|po( rb|θ)] ) ∫p( rb|θ) {∂ ln[p( rb|θ)/po( rb|θ)]

∂θ }2

drb

(20)

∆IF[p|po] ) ∫p( rb) { ∂

∂ rb
ln[ p( rb)

po( rb)]}2

drb

) ∫po( p
po

) [∂ ln(p/po)

∂ rb ]2

drb (21)

δ{∆IF[p|po] - ê ∫p( rb)} ) 0 (22)

-(d ln R( rb)
drb )2

- ê ) 0 (23)

ln R ) x-ê ∫ drb, ê e 0 (24)

-I loc
F [p|po] ) ∆IF[p|po] - Ideloc

F [p] )

2∫p (∂ ln p
∂ rb ) (∂ ln po

∂ rb ) drb - ∫p (∂ ln po

∂ rb )2

drb (25)

F( rb) ) FA
o( rb) RA( rb) + FB

o( rb) RB( rb) (26)

δ{∆IF[FAFB|FA
o FB

o] + ∫h( rb)[FA( rb) + FB( rb)] d rb} ) 0 (27)

∑
R)A,B

{FR
o( rb)[- (∂ lnRR( rb)

∂ rb )2

+ h( rb)]δFR( rb)} ) 0 (28)

RA( rb) ) RB( rb) ) R( rb) ) exp[∫-∞

rb
h1/2( rb′) drb′],

h( rb) g 0 (29)

R( rb) ) F( rb)/Fo( rb) ) D( rb) (30)

h ) [(∂F
∂ rb)/F - (∂Fo

∂ rb)/Fo]2

g 0 (31)
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We therefore again find the Hirshfeld subsystem densities
of eq 7 as the optimum solutions of the Fisher’s entropy
deficiency principle of eq 27. Because the same partitioning
follows from the KL entropy deficiency measure, one may
conjecture that the stockholder partitioning scheme is unique
in the information theory, being independent of the particular
form of the entropy functional used, provided the same reference
to the isolated fragments is made. Additional support for this
conclusion comes from the independent axiomatic approach by
Ayers18 to the same problem.

4. Stability of the Hirshfeld Subsystems

We now discuss in some detail the global stability criterion
of eq 11 in the AB system. To examine the behavior of the
∆SKL functional of eq 4 relative to displacements ofFR from
FR

H, R ) A,B, we impose the second local constraint of the
fixed density difference

in addition to the molecular density preservation eq 5. Notice
thatF(rb) andd(rb) uniquely determineFA ) (F + d)/2 andFB )
(F - d)/2, so there is no need for any optimization. It can be
verified that, among all trial{FR(d)}, uniquely specified byd
for the fixed F, the Hirshfeld densities indeed provide the
minimum information distance relative to the reference densities
(see eq 7):

where∆SKL[{FR[F,d]}|{FR
o}] ) ∆SKL[F,d]. Indeed, functional

differentiation of∆SKL[F,d] with respect tod(rb), for the fixed
F, gives the optimumd(rb) satisfying the following equation:

or FA/FB ) FA
o /FB

o and d ) D[FA
o - FB

o] ) dH, which is the
Hirshfeld result. Moreover

thus satisfying the stability criterion of eq 11:

with equality only ford ) dH.
The above inequality is a manifestation of a general property

of the KL entropy function, because the assimilation of the
additional constraint of eq 32 cannot result in a decrease of the
information distance in comparison to that corresponding to a
single constraint of eq 5. This is because the second constraint
actually restricts the range of trial distributions to a single pair
of FA andFB consistent with the first constraint.

Let us now consider another, global constraint, in addition
to eq 5, of the single subsystem density normalization, say for
R ) A:

in the entropy deficiency minimum principle of eq 6:

The solutions of the corresponding Euler equations are

whereú(rb) ) λ(rb) - 1 can be obtained from eq 5:

The global Lagrange multiplier can then be determined from
the second constraint of eq 37, which gives the equation

to be solved numerically forø ≡ exp(λA).
These solutions define the subsystem densities most resem-

bling the reference densities and reproducing the specified
subsystem numbers of electrons:

thus uniquely determining the entropy deficiency as a function
of the specified number of electrons in each subsystem:

Again, a stability inequality holds (see eq 33):

whereNR
H ) ∫FR

H drb, R ) A,B. This result demonstrates the
stable character of the equilibrium (Hirshfeld) subsystems with
respect to intersubsystem charge transfer.

5. Chemical Potential Equalization

5.1. External Equilibrium Condition. Let the molecular
densityF be the ground-state density for the AB system. The
equalization of the local chemical potentialµ(rb) of this equi-
librium distribution of electrons in AB as a whole14,19,20requires
that

where13,14

is the system electronic energy, uniquely determined byF or
by the external potential due to the nuclei,V(rb) ) VA(rb) + VB(rb)

d( rb) ) FA( rb) - FB( rb) (32)

min
{FR}fF

∆SKL[{FR}|{FR
o}] )

min
{FR(d)}

∆SKL[F,d] ) ∆SKL[{FR
H}|{FR

o}]

) ∫Fo( rb) D( rb) ln D( rb) drb )

∆SKL[F|Fo] (33)

(δ∆SKL[F,d]

δd( rb) )
F

) ln{[F( rb) - d( rb)]FB
o( rb)

[F( rb) - d( rb)]FA
o( rb)} ) 0 (34)

(δ2∆SKL[F,d]

δd( rb)δd( rb))
F
|dH ) 2[Fo( rb)

F( rb) ] > 0 (35)

(δ2∆SKL[F,d])F|dH ) ∫Fo( rb)

F( rb)
[d( rb) - dH( rb)]2 drb g 0 (36)

∫FA( rb) drb ) NA (37)

δ{SKL[FA,FB] - ∫λh( rb)[FA( rb) + FB( rb)] d rb -

λA ∫FA( rb) drb} ) 0 (38)

FA( rb) ) FA
o( rb) exp[ú( rb) + λA] ≡ FA

o( rb) exp[ú( rb)]ø (39)

FB( rb) ) FB
o( rb) exp[ú( rb)] (40)

ú( rb) ) ln{ F( rb)

[øFA
o( rb) + FB

o( rb)]} (41)

ø∫ F( rb)FA
o( rb)

øFA
o( rb) + FB

o( rb)
drb ) NA (42)

FR ) FR(NA,NB), R ) A,B (43)

∆SKL[FR(NA,NB)|FA
o FB

o] ) ∆SKL[NANB|FA
o FB

o] (44)

∆SKL[NANB|FA
o FB

o] g ∆SKL[NA
HNB

H|FA
o FB

o] (45)

µ( rb) ) µ[F; rb] ≡ δEV[F]

δF( rb)
) µ ≡ ∂EhV(N)

∂N
(46)

EV[F] ) ∫VF drb + F[F] ) EhV(N) (47)
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) V[F;rb], and the overall number of electrons,N[F] ) ∫F(rb) drb.
Here,F[F] ) 〈ψ[F]|F̂|ψ[F]〉 generates the sum of the electronic
kinetic and repulsion energies,F̂ ) T̂e + V̂ee, for the ground-
stateψ[F]; µ ) µ[F] ) µ̃[N,V] stands for the systemglobal
chemical potential; and VR(rb) denotes the external potential
generated by the nuclei in the A or B subsystem.

Equation 46 directly follows from the DFT variational
principle for open systems13,19

which can be written in the equivalent form

Above and throughout the paper, functional differentiation with
respect to the electron densities is carried out for constant
external potential. In these equilibrium conditions,∫δF(rb) drb
) dN * 0, so that a change in the molecular density originates
from an infinitesimal outflow (inflow) of electrons from (to)
AB, involving a hypothetical electron reservoir. We therefore
call eq 46 theexternal equilibrium criterionfor AB as a whole.

Let us now turn to the density partitioning of eq 5, which
divides N electrons of AB into NA and NB electrons in
subsystems. Let us express the molecular electronic energy as
the equivalent functional of subsystem densities

This allows one to define thesubsystem local chemical potentials

Thus, the local subsystem chemical potentials are equal to the
global local chemical potential, which is equalized at the global
chemical potential level,µ ) µ[F] ) µ(rb) ) µR(rb). Such external
derivatives cannot discriminate, therefore, between alternative
divisions of the molecular density.

Moreover, expressing the energy as a function ofNA andNB,
EV[F] ) εjV(NA,NB), allows one to define theglobal subsystem
chemical potentials{µR} (see eq 46):

also equalized at the global chemical potential level. Thus, for
each subsystem,µR ) µR(rb) ) µ.

It follows from eq 7 that any external displacement of the
molecular densityδF(rb) is uniquely partitioned into{δFR

H(rb)}
displacements of the subsystem densities

Therefore, defining the Hirshfeld energy functional,εV[FA
H[F],

FB
H[F]] ≡ EV[F], one obtains the corresponding subsystem

partial functional derivative, called theHirshfeld chemical
potential

which is not equalized throughout the space. Also, combining
eqs 46 and 54 gives

We note that any shift inδFA
H implies an associated shift in

δFB
H, so that δFA

H + δFB
H ) δF. This is in contrast to the

functional derivatives of eq 51, probing the energy response to
a local change of one subsystem for the fixed (embedding)
density of the other subsystem.

5.2. Internal Equilibrium Condition. In the partitioning
problem of eq 5,F andd (eq 32) uniquely specify subsystem
densities, both equilibrium and nonequilibrium:FR ) FR(F,d),
R ) A,B. Consider the externally closed AB system, consisting
of the two mutually open subsystems A and B. The fixedF
constraint,dF(rb) ) 0, then implies a local relation between
virtual, intersubsystem density displacements

or

Consider now the in situ (charge transfer) functional derivative
of the molecular energy density functional in the subsystem
resolution (eq 50),εV[{FR(F,d)}] ≡ εV[F,d], for constantF:

where we have used eqs 51, 56, and 57 to identify derivatives
in the chain rule. Thus, becauseµA(rb) ) µB(rb) ) µ, the internal
equilibrium condition is automatically satisfied for anyd(rb), as
for all alternative partitionings of the ground-stateF into FA

andFB.
The foregoing analysis of the external and internal equilibrium

criteria shows that the chemical potential (electronegativity)
quantities cannot be used to identify the equilibrium partitioning
of the molecular ground-state density. Their failure to discrimi-
nate among alternative division schemes is because the elec-
tronic energyEV[F] is the same for all partitionings:δV[F,d] )
EV[F]. This indicates a clear need for entropic parameters to
characterize the states of subsystems in AB. We shall examine
this in more detail in Section 6 below.

5.3. Energy Partitioning and Subsystems-in-Molecules.
Although the energyEV[F] of AB as a whole is conserved for
all partitionings of eq 5, the energy of an embedded subsystem
R ) A,B in AB, in the presence of the other subsystemâ * R,
changes as a result of the intersubsystem charge transfer. Here
we examine the subtle problem of the partitioning of the
molecular energy of eq 47 into the subsystem energies for a
given partitioning ofF into FA andFB.

δ{EV[F] - µN[F]} ) 0, orµ )
∂EhV(N)

∂N
(48)

∫(δEV[F]

δF( rb)
- µ) δF( rb) ) 0, orµ( rb) ) µ (49)

EV[F] ) EV[FA + FB] ) εV[FA,FB] (50)

µR( rb) ≡ (δεV[FA,FB]

δFR( rb) )
Fâ*R

)
δEV[F]

δF( rb) ( δF( rb)

δFR( rb))Fâ*R

) µ( rb)

(51)

µR ≡ (∂εjV(NA,NB)

∂NR
)

Nâ*R

) ∫δEV[F]

δF( rb) (∂F( rb)
∂NR

)
Nâ*R

drb

) µ(∂ ∫F( rb) drb

∂NR
)

Nâ*R

) µ( ∂N
∂NR

)
Nâ*R

) µ (52)

dFR
H( rb)

dF( rb)
) wR

H( rb), R ) A,B (53)

µR
H( rb) ≡ δεV[FA

H,FB
H]

δFR
H( rb)

)
δEV[F]

δF( rb)

dF( rb)

dFR
H( rb)

) µ
wR

H( rb)
≡ µR

H[F; rb],

R ) A,B (54)

µR
H( rb)δFR

H( rb) ) µδF( rb), R ) A,B (55)

(δFA( rb))F ) -(δFB( rb))F (56)

(δd( rb))F ) 2[δFA( rb)]F ) - 2[δFB( rb)]F (57)

(δεV[F,d]

δd( rb) )
F

) ∑
R)A,B

(δεV[FA,FB]

δFR( rb) )
Fâ*R

(∂FR( rb)

∂d( rb) )
F

) 1
2
[µA( rb) - µB( rb)] ) 0 (58)
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Consider first the energyER[FR], which depends solely on
the single subsystem density. For this purpose, we partition the
universal Hohenberg-Kohn functionalF[F] ) F[FA + FB] of
eq 47 into the additive,Fa[FA, FB] ) F[FA] + F[FB], and
nonadditive,Fn[FA, FB] ) F[F] - Fa[FA,FB], contributions:

The nonadditive part must vanish at infinite separation between
subsystems, lim(RABf∞) Fn[FA, FB] ) 0, because by the size-
consistency requirement

and

This partitioning ofF[F] gives

Because of the nonvanishingFn[FA,FB] for the overlapping
densities of subsystems at finite separations, the energy of the
embeddedR (in the presence ofâ) would appear to be best
defined as

The total electronic energy can now be expressed as (see eq
50)

This gives for the local subsystem chemical potential of eq 51

whereµR
R(rb) ) V(rb) + δF[FR]/δFR(rb) is the contribution due to

FR alone and µR
e(rb) is the corresponding embedding (e)

correction due toFâ. The subsystem chemical potential equal-
ization µR(rb) ) µR ) µ (Section 5.1) then implies thatµR

e(rb)
must cancel out the local dependence ofµR

R(rb). The internal
equilibrium criterion of Section 5.2 directly follows from the
condition of preservation ofEV[FA + FB] ) EV[F] with respect
to all density preserving virtual flows of electrons between
subsystems,dFA + dFB ) 0 (see also eq 58):

We would like to remark now that in the DFT for sub-
systems18,21 one absorbs the effect of embedding, because of

the presence of the complementary subsystem, into the sub-
system effective external potentials{VR

eff(rb) ) VR
eff[V,{FR}; rb]},

so that the embedded subsystem energy (eq 63) assumes the
global-like form (see eq 47):

Hence, the equation for the subsystem chemical potential
becomes

which also is of the form of the global ground-state Euler
equation (see eq 49):

It follows from the chemical potential electronegativity (ø)
equalizationµA(rb) ) µB(rb) ) µ ) -ø (Section 5.1), the
partitioning of eq 64, and eqs 67 and 69, that

and

An algorithm for determining the subsystem effective external
potential from the embedding density of the complementary
molecular environment has been proposed by Ayers,18 in the
spirit of the Zhao-Morrison-Parr (ZMP) procedure.22

The above analysis indicates that the subsystem densityFR
is the ground-state density for the effective external potential
VR

eff:

Equation 70 also demonstrates that for constant subsystem
external potentials{VR}, and thus alsoV, the effective potential
is a functional of the subsystem densities

Therefore, by the Hohenberg-Kohn theorem13 and its multi-
component generalization,23 a given partitioningF ) FA + FB

of the molecular electronic density is uniquely identified by the
corresponding subsystem effective external potentials:

Moreover, the equilibrium (Hirshfeld) electronic densities of
subsystems are uniquely identified by the minimum of the
missing entropy functional∆S[FAFB|FA

o FB
o] ) S[FA,FB], e.g.,

SKL[FA,FB] or SF[FA,FB] (Section 3). Therefore, the following
mapping exists between information-distance entropies, Hirsh-

F[F] ) Fa[FA,FB] + Fn[FA,FB] (59)

lim
RABf∞

E[F] ) EA[FA] + EB[FB] (60)

lim
Rf∞

∫FV drb ) ∑
R)A,B

∫FRVR drb (61)

ER[FR] ) ∫V( rb)FR( rb) drb + F[FR], R ) A,B (62)

εR[FA,FB] ) ER[FR] + Fn[FA,FB] (63)

EV[F] ) εA[FA,FB] + EB[FB] ) EA[FA] + εB[FA,FB]

≡ εV[FA,FB] (64)

µR( rb) ) (δεR[FA,FB]

δFR( rb) )
Fâ*R

)
δER[FR]

δFR( rb)
+ (δFn[FA,FB]

δFR( rb) )
Fâ*R

≡ µR
R( rb) + µR

e( rb) ) µR[FR,Fâ; rb], R ) A,B
(65)

dεV[FA,FB] ) ∑
R)A,B

∫µR( rb) dFR( rb) drb

) ∫dFA( rb)[µA( rb) - µB( rb)] d rb

) ∫dFB( rb)[µB( rb) - µA( rb)] d rb ) 0 (66)

εR[FR,Fâ] ) ∫VR
eff( rb)FR( rb) drb + F[FR] ) EhVR

eff(NR),

R ) A,B (67)

µR( rb) ) (δεR[FR,Fâ]

δFR( rb) )
Fâ*R

) VR
eff( rb) +

δF[FR]

δFR( rb)
(68)

µ( rb) ) µ ) V( rb) +
δF[F]

δF( rb)
(69)

VR
eff( rb) ) VR( rb) + [Vâ*R( rb) + (δFn[FR,Fâ]

δFR( rb) )
Fâ*R

] (70)

δF[F]

δF( rb)
)

δF[FR]

δFR( rb)
+ (δFn[FR,Fâ]

δFR( rb) )
Fâ*R

(71)

FR( rb) ) FR[VR
eff; rb] (72)

VR
eff( rb) ) VR

eff[FA,FB; rb] (73)

[FA,FB] T [VA
eff,VB

eff] (74)
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feld densities of subsystems, the associated effective external
potentials, and subsystem energies:

whereVR,H
eff ≡ VR

eff[FA
H,FB

H; rb] andεR
H ≡ εR[FA

H,FB
H], R ) A,B. Note,

however, that the subsystem energies as defined by eq 67 do
not sum to the total energy (see eq 64).

This mapping and eq 67 provide a vital link between the
energies of equilibrium subsystems and their information
entropies. This connection between the information entropy and
the optimum partitioning of the molecular density, through the
effective external potentials, facilitates a “thermodynamic”
approach to subsystems-in-molecules, which we will explore
in the next section.

We also observe that, by manipulating the effective external
potentials, one can interpretV-representable densities of any
(nonequilibrium) partitioning ofF, {FR}, as comprising the
ground-state densities for some{VR

eff}. Such external potentials
can therefore be viewed as thermodynamic “constraints” as-
sociated with the particular division ofF. The basic problem of
“thermodynamics” behind such a partitioning procedure is the
determination of the equilibrium state (i.e., Hirshfeld partition-
ing) that eventually results after the removal of such internal
constraints in a closed composite system, characterized by the
fixed molecular electronic densityF. The molecular external
potential V ) VA + VB effectively determines the molecular
“volume”, in which electrons are “confined”. Similarly, the
subsystem effective external potentials{VR

eff} can be consid-
ered as molecular analogues of the thermodynamic volumes
of subsystems. Therefore, their energy conjugates,{[∂εR/
∂VR

eff(rb)]FA,FB ) FR(rb)} (see eq 67), are reminiscent of the
thermodynamical pressures of subsystems. Similarly, the func-
tional derivative [δEV[F]/δV(rb)]F ) F(rb), represents the molecular
analogue of the local “pressure” of the composite system,
associated with the “volume” related external potentialV.

We call attention to the fact that a search for the external
potential V[F], which matches a given densityF through the
ground-state relations of eqs 72 and 73, calls for the universal
Legendre transform functional24-26 F[F] ) maxV[EV[F] - ∫FV
drb]. For theV-representable densities, this search is equivalent
to the Levy construction.27

6. Elements of the Local “Thermodynamical” Description
of the Equilibrium Partitioning of Molecular Densities

As has been shown in the preceding section, a given
exhaustive partitioning of the ground-state densityF ) F[N,V]
into FA andFB, F ) FA + FB, does not affect the energy of the
composite system as a whole,EV[F], while directly influencing
the embedded subsystem energies{εR[FA,FB]} and the missing
information functionalS[FA,FB]. The equilibrium partitioning
into Hirshfeld subsystem densities,{FR

H}, gives rise to a unique
minimum value of the missing informationS[{FR

H}] for the
assumed references{FR

o}, which also determine the promol-
ecule densityFo. Any assumed subsystem densities determine
uniquely the effective subsystem potentials{VR

eff[FA,FB; rb]}, for
which they are the ground-state densities. Therefore, the search
for the optimum partitioning can be also interpreted as a search
in the subsystem effective external potential space.

We now attempt a phenomenological description of the
subsystem equilibrium (Hirshfeld) densities in the spirit of a
previous “thermodynamical” interpretation of DFT.16 To for-
mulate a basis for such a local “thermodynamical” transcription
of the Hirshfeld partitioning scheme, we will follow the

axiomatic approach of Callen.15 We first present the molecular
equivalents of Callen’s first three postulates and develop their
implications. We also comment upon properties of the state
parameters of molecular subsystems.

Equilibrium Partitionings. Postulate I. Among all possible
partitionings ofF’s into FA and FB, for the chosen references
{FR

o} and Fo, there exist particular diVisions (called equilibri-
um ones), that are characterized completely byF and the
reference densities.

Indeed,{FR
H ) FR

o[F/Fo] ) FR
H[F, Fo, FR

o]} give rise to F,
which by the Hohenberg-Kohn theorems determines external
potentialV ) V[F] and the system number of electronsN )
N[F]. We have clearly proved in the preceding sections the stable
equilibrium character of the Hirshfeld subsystems. Also, because
the Hirshfeld subsystem densities determineS[FA

H,FB
H] and

{εR[FA
H,FB

H]}, the equilibrium entropy deficiency and subsystem
energies are unique functionals of the molecular and reference
densities.

In the equilibrium “thermodynamics”, one is interested in
changes of subsystems, from one equilibrium partitioning, with
(F, Fo, {FR

o}), to another, with (F′, Fo′, {FR
o′}). All such

displacements involve a shift in the molecular ground-state
density and, thus, also a change in the external potential (e.g.,
due to a shift in nuclear positions in space) and the associated
referenceFo.

Minimum Entropy Deficiency and Entropy Density.
Postulate II. There exists a function (called the information
entropy deficiency S) of the extensiVe subsystem parameters{FR}
of any composite system AB, defined for all equilibrium
(Hirshfeld) partitionings ofF and haVing the following property.
The Values assumed by{FR} in the absence of internal
constraints{VR

eff[[FR]; rb]} are those that minimize S oVer the
manifold of constrained equilibrium states.

We have already demonstrated this property of the missing
information functionalS) SKL[FA,FB] in Sections 2 and 4. The
given nonequilibrium partitionings can always be considered
as representing ground-state subsystem densities for the corre-
sponding effective external potentials{VR

eff}, representing the
internal constraints, which identify the given subsystem densi-
ties.

The KL7 entropy deficiencyS ) SKL[FA,FB] is always
nonnegative. This follows from the inequality lnx g 1 - 1/x.
Hence, ln(FR/FR

o) g (FR - FR
o)/FR. Multiplying the last inequal-

ity by FR and integrating over all space then gives

because the molecule and promolecule densities are isoelec-
tronic.

Molecular and subsystem densities can be thought of as
strongly nonhomogeneous electron gases. Therefore, for inter-
pretative purposes, one may use the appropriatelocal informa-
tion-entropy parameters, e.g., theentropy deficiency density s(rb)
and its additive subsystem contributions,s(rb) ) ΣR)A,B[sR(rb)],
as the parameters of state for a current partitioning ofF.
Alternatively, the local entropy densities per electron,sb(rb) )
s(rb)/F(rb) and{sbR(rb) ) sR(rb)/FR(rb)}, can be used for this purpose.

It should be realized, however, that the densities of the
functionalSKL[FA,FB] of eq 4 and of its subsystem components
can be negative. Therefore, to ensure the positive character of
the local missing entropies of information (i.e., the information
“distance”), we take, as the basic “thermodynamic” entropy

SKL[FA,FB] g ∑
R)A,B

∫(FR - FR
o) drb ) ∫(F - Fo) drb ) 0

(76)

S[FA
H,FB

H] T [FA
H,FB

H] T [VA,H
eff ,VB,H

eff ] T [εR
H,εâ

H] (75)
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measure, the density of the symmetrized missing entropy of
Kullback,3,18 calleddiVergence:

This represents the unbiased sum of the information distance
from FR to FR

o and that fromFR
o to FR, R ) A,B. The equality

sign in eq 77 requires{FR ) FR
o}. BecausesR

K(rb) is a monotonic
increasing function of the local density value,sRK(rb) )
sR

K(FR(rb)), the subsystem density state variables{FR} can be
replaced by the corresponding local entropies{sR

K} as the state
parameters defining the current partitioning ofF. All of this
accords with the following:

Postulate III. The entropy deficiency of a composite system
S and its density sK(rb) are additiVe oVer the constituent
components.

Information “Thermodynamical” Criterion of the Equi-
librium Partitioning. One obtains from eq 77 the local
dependencies of the set of local subsystem parameters{sR

K(rb)}
upon the other set{FR(rb)}:

The corresponding partial functional derivatives of the embedded
subsystem energies{εR[FR, Fâ] ) ε̃R[sA

K,sB
K]} with respect to the

subsystem entropy densities{sR
K(rb)} define thelocal informa-

tion “temperatures”:

where we have used eq 78 and invoked the chemical potential
equalization (see Section 5).

It should be observed that the equilibrium values of the
Kullback entropy densities of eq 77 are (see eq 7)

Also, the corresponding local information “temperatures” from
eqs 78 and 79 are

where

Equations 81 and 82 imply that

This is the local information-entropic supplement to the equi-
librium criterion in the{FR} representation (eqs 51 and 58),
i.e., of the subsystem chemical potential equalization. It demands

that at each point in space the local information “temperatures”
of the mutually open subsystems equalize at the equilibrium
partitioning. Notice, however, that, although the subsystem
chemical potentials equalize for any trial partitioning, the
information temperature equalization takes place only for the
equilibrium (Hirshfeld) subsystem densities.

A similar conclusion follows from the corresponding “ther-
modynamic” interpretation of the variational procedure of eq
6. Suppose that the equilibrium densities of subsystems have
been reached. The minimum of the entropy deficiencySKL[FA,
FB] for such optimum division ofF then demands that a virtual
transfer of the electronic density, dFA(rb) ) -dFB(rb), will produce
no change inSKL[FA, FB] of the composite system: d∆SKL )
0. BecauseSKL is an additive sum of the subsystem contribu-
tions, the corresponding expression for d∆SKL gives

where we have introduced the KL entropy deficiency densities
of subsystems (see eqs 1-3) per electron

The corresponding information-theoretic condition for equi-
librium partitioning therefore requires

Equation 7 shows that this equation is indeed satisfied by the
Hirshfeld densities of subsystems, for which

Let us similarly interpret the entropy deficiency minimum
principle of eq 27, for the referenced Fisher entropy. The
extremum implies that for the equilibrium densities dSF ) 0,
where dSF corresponds to an infinitesimal, virtual transfer of
density between subsystems dFA(rb) ) -dFB(rb). Thus

where the Fisher information density per electron of subsystem
R in AB (see eq 21) is

SK[FA,FB] ) ∑
R)A,B

{∆SKL[FR|FR
o] + ∆SKL[FR

o|FR]}

) ∑
R)A,B

∫(FR - FR
o) ln(FR

FR
o) drb

≡ ∑
R)A,B

∫sR
K( rb) drb ≡ ∫sK( rb) drb g 0 (77)

dsR
K( rb)

dFR( rb)
) [dFR( rb)

dsR
K( rb)]-1

) ln(FR

FR
o) +

FR - FR
o

FR
≡ fR( rb) (78)

τR
K ≡ (δε̃R[sA

K,sB
K]

δsR
K( rb) )

Fâ*R

) (δεR[FA,FB]

δFR( rb) )
Fâ*R

fR
-1( rb)

) µR( rb)/fR( rb) ) µ/fR( rb) (79)

sR
K,H( rb) ≡ sR

K[{FR
H}; rb] ≡ FR

o( rb)[D( rb) - 1] ln D( rb) (80)

τR
K,H( rb) ) µ/fR

H( rb), R ) A,B (81)

fR
H( rb) ) ln D( rb) + [D( rb) - 1]/D( rb) ≡ f( rb) (82)

τA
K,H( rb) ) τB

K,H( rb) (83)

dSKL[FA,FB] ) ∑
R)A,B

∫δSR
KL[FR]

δFR( rb)
dFR( rb) drb

≡ ∫[sjR
KL( rb) - sjâ

KL( rb)] dFR( rb) drb ) 0 (84)

sjR
KL( rb) )

δSR
KL

δFR( rb)
) I[FR|FR

o] + 1, R ) A,B (85)

sjA
KL( rb) ) sjB

KL( rb)

or I[FA|FA
o] ) I[FB|FB

o]

or RA( rb) ≡ FA( rb)

FA
o( rb)

)
FB( rb)

FB
o( rb)

≡ RB( rb) (86)

Ra
H( rb) ) D( rb), R ) A,B (87)

∑
R)A,B

∫ δIR
F

δFR( rb)
dFR( rb) drb )

∫[sjB
F( rb) - sjA

F( rb)] dFA( rb) drb ) 0 (88)

sjR
F( rb) ≡ [∂ ln RR( rb)

∂ rb ]2

(89)

7398 J. Phys. Chem. A, Vol. 105, No. 31, 2001 Nalewajski and Parr



Therefore, the equilibrium again requires that

which is indeed satisfied by the Hirshfeld densities of eq 7 (see
eq 87).

The above local information entropy and temperature tran-
scriptions of the intersubsystem equilibrium criteria of eqs 83,
86, 87, and 90 can be thought of as a “thermodynamical”
supplement of the familiar chemical potential equalization
principle. Although the latter fails to distinguish the Hirshfeld
division as the equilibrium one, the local entropy/temperature
criteria uniquely identify this very partitioning as the equilibrium
one. Equilibrium requires equalization of the local information
content parameters of the mutually open subsystems.

7. Elements of the Information Theoretic
“Thermodynamics” in DFT

The aim of the truly “thermodynamic” description just given
is to describe changes that accompany a given displacement of
the system under consideration, from one equilibrium (ground-
state) molecular densityF1 ) F1[N1,V1] to anotherF2 ) F2[N2,V2].
Such a “horizontal” displacement, along the ground-state surface
Fg.s. ) F[N,V] is in contrast to the “vertical” search in theF
partitioning problem, which we examined earlier, in whichF is
fixed. Such a vertical search is over the effective external
potentials of subsystems or, equivalently, their densities, which
sum up to a given molecular density.

A given change from oneV-representable densityF to another
involves a change in the generalized ground-state density
functional for the electronic energy

in which the external potential changes withF in such a way
that the currentF matches the external potentialV[F], for which
F is the ground-state density. This energy density functional
differs from the Hohenberg-Kohn functionalEV[F], the varia-
tional principle for which calls for the minimum energy forfixed
V, not related to the trial densityF.13

To relate the information entropyS[F], which could also
involve relevant reference densities, to the system energetical
parameters, thus introducing the “physics” to the information
theoretic problem, one uses the generalized variational principle
in the entropy representation:

where λk is the Lagrange multiplier associated with thekth
constraintIk[F] ) Ik

o, with {Ik[F]} including the system energy
quantities. Such an application of the information entropy in
determining the exchange-correlation part of the effective
Kohn-Sham potential28 has recently been reported by Parr and
Wang.29 The entropy term in this principle represents a “device”,
which allows one to assimilate in the optimum densityF the
physical information contained in the constraints, and possibly
in the reference densities built in theS[F] functional itself, in
the most unbiased manner possible.

As in the ordinary thermodynamics of open systems, the
entropy extremum principle of eq 92 requires the constraint of
the fixed number of electrons,N[F] ) No. Moreover, to introduce
a temperature parameter, usually associated with the constraint
of the fixed average energy, as the inverse of its Lagrange
multiplier, we also requireE[F] ) Eo. The corresponding

generalized entropy extremum principle involving these two
constraints then reads

where we have identified, by analogy with ordinary thermody-
namics

as the inverse of the system global information temperature (Th)
and the negative ratio of the chemical potential related quantity
µj to Th.

To identify the physical meaning ofµj we examine the
corresponding principle in the energy representation for the fixed
entropyS[F] ) So

Hence

It should be realized, however, that the constantN and
constantE constraints do not identify a single ground-state
density but rather a whole ensemble of them, because there are
many ground-state densities which reproduce the right energy
and right number of electrons. The molecular state specified
by these constraints is a statistical mixture of all admissible
densities, which satisfy the constraints.

When one fixes the molecular densityF(rb) ) Fo(rb) through
the corresponding local Lagrange multiplierω(rb), one also fixes
the energyE[F] ) E[Fo] and the number of electronsN[F] )
N[Fo], thus making the two constraints of eq 93 redundant. For
a finite value ofµj, this impliesTh[Fo] f ∞, because then the
two constraint terms in eq 93 vanish identically. In the
variational principle of eq 96, the information entropy “penalty”
term is multiplied by an infinite Lagrange multiplier,29 as in
the ZMP procedure.22 The fixed F principle of the minimum
energy for the fixed entropy reads

or

The last two equations must be equivalent to the ground-
state Euler eqs 48 and 69, respectively, when the external
potential is fixed. Indeed, becauseE[F] ) ∫V[F;rb]F(rb) drb+ F[F]

Hence, by equatingδV[F;rb′]/δF(rb) ) 0 (fixed V functional), as

sjA
F( rb) ) sjB

F( rb) or RA( rb) ) RB( rb), (90)

E[F] ) EV[F][F] ≡ Ẽ[V[F],F] (91)

δ{S[F] - ∑
k

λkIk[F]} ) 0 (92)

δ{S[F] - 1

Th
E[F] + µj

Th
N[F]} ) 0 (93)

Th-1 ) (∂S/∂E)N (94)

- µj
Th

) (∂S/∂N)E (95)

δ{E[F] - ThS[F] - µjN[F]} ) 0 (96)

Th ) (∂E
∂S)N

and µj ) (∂E
∂N)S

(97)

δ{E[F] - ∫ω( rb)F( rb) drb} ) 0 (98)

(δE[V[F],F]

δF( rb) )
F)Fo

) ω( rb) (99)

(δE[F]

δF( rb))F)Fo

) V[Fo; rb] +
δF[F]

δF( rb)
|Fo + ∫Fo( rb)

δV[F; rb′]
δF( rb)

drb′

) µ[Fo] + ∫Fo( rb)
δV[F; rb′]

δF( rb)
drb′ ) ω( rb)

(100)
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is done in the Hohenberg-Kohn variational principle, one
indeed recovers the HK Euler eq 69.

8. Conclusion

It follows from the present and previous analyses of the
information-theoretic basis of the Hirshfeld partitioning of the
molecular electron densities that the stockholder molecular
fragments, e.g., the optimum, unbiased bonded AIM, result from
the minimization of the information distance between the AIM
densities and those of free atoms defining the promolecule
reference. As we have demonstrated in the present work, this
result is independent of the two alternative (Shannon or Fisher)
referenced entropies, adopted as possible information theoretic
measures of this distance. We have also shown that the Hirshfeld
fragments exhibit unique equilibrium properties, most conve-
niently formulated in terms of the interfragment equalization
of the alternative indices of the local information content of
each AIM density component.

Clearly, the Hirshfeld procedure is reference dependent.
However, as recently argued and numerically demonstrated
elsewhere,12 the resulting AIM densities for alternative pro-
molecule choices, e.g., the atomic and ionic references in NaCl,
are for all practical purposes the same. This weak dependence
of the AIM/fragment densities on the selected promolecule
reference is natural in chemistry. As explicitly reflected by the
familiar density difference diagrams, chemistry as the science
of chemical bonds indeed deals with transitions of constituent
atoms from their initial, nonbonded (ground) states of the
promolecule to their final bonded state in a molecule. Therefore,
the concept of a relevant reference is at the basis of most
interpretations in chemistry, so its reappearance in the context
of the Hirshfeld partitioning should not come as a surprise. The
universal (standard) nonbonded reference is that of thesepa-
rated (neutral) free atomsin their respective ground states,
irrespective of the actual net electric charge and the character
of bonds in the molecular system under consideration. Only such
a convention represents a truly nonbonded promolecule refer-
ence, e.g., in NaCl, because the ionic promolecule, Na+Cl-,
represents an ionic pair exhibiting a single ionic bond. Notice
that this unique, standard choice of the atomic reference is also
in agreement with the accepted chemical reference for determin-
ing the direction and the amount of charge transfer in molecular
systems. Therefore, the reference “ambiguity” problem of the
Hirshfeld partitioning is apparent, if one is to conform to the
accepted chemical practice. In other words, the Hirshfeld
fragments, if they are to be used as tools in thechemicaltheory
of electronic structure of molecular systems, must be derived
from the unique, standard reference of the free neutral atoms
of the periodic table of elements.
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